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While non-spatial models predict that like species cannot stably coexist, empirical studies
suggest that similar species have similar distributions due to shared habitat requirements.
A model is developed to discuss competition and coexistence in subdivided but locally stable
habitats. The model predicts that in some cases it is possible for one species to exclude the
other species from a geographic region, while in other cases two competing species can stably
coexist. The equilibrium level and the fraction of doubly occupied patches, if there is coexist-
ence, are determined by the strength of competition on colonization and exclusion in such
a system. Also, it is possible for two ecologically identical species to stably coexist, and two
asymmetrically competing species can coexist when there is a trade-o! between local competi-
tion ability and invasion ability. When rescue e!ects are considered, the stable region at
internal equilibrium point would be reduced, but the fraction of doubly occupied patches
would be enlarged.
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1. Introduction

Although Gause's law has become widely accep-
ted, the mechanism of coexistence of competitive
species still remains a central problem that at-
tracts the attention of many ecologists (Begon
et al., 1996; Wang & Zhang, 1997). On the one
hand, the Lotka}Volterra model of interspeci"c
competition predicts that two ecologically identi-
cal species cannot coexist at equilibrium in a
stable environment. This acts as the theoretical
ground for the competitive exclusion principle.
On the other hand, it has been suggested that
similar species have similar distributions due to
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shared habitat requirements. Empirical studies
show that, in stable environments, many like
species may live together to compete for limiting
resources, and the strength of the competition
will increase with increasing productivity (Brown
& Davidson, 1977). For example, more than 100
species coexist with little bluestem in grasslands
and native prairie in which nitrogen is the only
limiting resource (Tilman, 1994).

Of course, there are no two identical species in
nature, but the competitive exclusion principle is
of great theoretical importance for understanding
the role of competition and coexistence in com-
munity ecology. In recent years, it has been
considered that the heterogeneity of environ-
ments is an essential factor controlling the species
dynamics and biodiversity of many communities
(Gilpin & Hanski, 1991; Tilman, 1994; Hanski
( 2000 Academic Press
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& Gilpin, 1997; Tilman et al., 1997). Theoretical
models have demonstrated that heterogeneous
environments may allow competing species, two
congruent species (Levins & Culver, 1971; Slat-
kin, 1974; Hanski, 1983) or a fugitive species and
a superior competitor (Nee & May, 1992; Hanski
Gilpin, 1997), to stably coexist as metapopula-
tions. In spatially fragmented habitats, coexist-
ence on the local time-scale may be transitory,
but regional coexistence may be maintained
through immigration and patch dynamics
(Hanski, 1983; Wilson, 1992).

Models of competition in spatially structured
habitats are the extensions of the original meta-
population model of Levins (1969, 1970). Assume
there is a large network of similar small patches,
with local dynamics occurring on a fast time-
scale in comparison with metapopulation dy-
namics. The patches can be colonized by all the
species under consideration. The local popula-
tions in this system are assumed to be subject to
stochastic extinctions. The e!ect of competition
is to change the probability of colonization or
extinction within a single habitat. The number of
individuals of each species in each of the habitats
is not considered. In these models, the relevant
variables are not the number of individuals of
each species within a community, but the number
of habitats in a region that are colonized by each
species (Slatkin, 1974).

The di!erence between the Lotka}Volterra
model and the metapopulation model is not one
of mechanism but of scale. For example, in
Slatkin's competition models (Slatkin, 1974;
see also Taneyhill, 1999), it is assumed that
the dynamics of two competing species within
a doubly occupied patch can be roughly de-
scribed by the Lotka}Volterra equations or sim-
ilar competition models on the local time-scale.
The predictions of these equations could be re-
lated to the extinction and colonization probabil-
ities. From the models of metapopulations,
we may conclude that not only the movements
of individuals among the patches but also
the patch dynamics (local population turnover)
play a critical role in the coexistence phenomena.
Two like species may stably coexist through
both the ability of invasion of the other's patches
and the ability of colonizing empty patches.
A fugitive species may coexist with a superior
species through the ability of colonizing empty
patches.

However, in nature, not all habitats are always
in the danger of local population turnover and the
biodiversity will increase with increasing net pri-
mary production. Experimental studies also indi-
cate that like species may stably coexist in spa-
tially subdivided but locally stable habitats. In
a recent paper, Gotelli (1997) reported results from
a set of experiments that were conducted in several
patchy habitats, without explicit local population
turnover, to examine the coexistence of competing
species. The species he used were ant lion larvae of
Myrmeleon crudelis and M. immaculatus. There are
three larval instars of each species and overlapping
generations of larvae coexist. In the experiments,
the presence of third-instar larvae did not a!ect
recruitment or survivorship of "rst-instar larvae.
So, the excluded elder-instars of a species can be
recolonized by "rst-instars, and the coexistence is
maintained. There is no relation between the co-
existence and the local-scale dynamics (local
population turnover).

The results of Gotelli's experiments indicate
that it is only the abilities of the two similar
species to colonize the patches occupied by its
competitors that play a key role in the coexist-
ence phenomena. Now, the question is whether it
is a general pattern in such a system, or further,
a general pattern in all ecological communities.
When and how can two competing species stably
coexist? In this paper, we will modify the basic
metapopulation model in order to explore the
interactions of two competing species.

2. An Analytical Model of Two Competing
Species

Let us consider a habitat composed of a large
number of distinct patches. Each patch acts as
a stable microhabitat, within which environ-
mental stochasticity is neglected. First, only one
species in such an environment is considered. Let
p be the fraction of patches occupied by the
species and we have

dp
dt

"mp (1!p), (1)

where m is the colonization rate. This states that
the rate of change in site occupancy (dp/dt)
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depends on the rate of propagule production (mp)
multiplied by the proportion of currently open
sites (1!p). Equation (1) has the same form as the
logistic equation of single species in limited habitat.
The solution of eqn (1) can be written directly as

p(t)"
1

1#(1!p(0)) e~mt/p(0)
, (2)

where p(0) is the initial fraction of occupied
patches. With time tending to in"nity (tPR), all
the patches tend to be occupied (pP1). In the
case of no local extinction, a single species will
occupy all the habitats.

Now, as two competing species in such an
environment are considered, suppose that each
species can colonize the remaining patches, ne-
glecting the presence of another species. How-
ever, the colonization rate will be decreased by
the presence of the competitor. The persistence of
one species in a patch is also a!ected by the
presence of its competitor.

Let p
1

be the fraction of habitat patches occu-
pied by species 1 only, p

2
the fraction of patches

occupied by species 2 only, p
3

the fraction of
patches occupied by both species together, and
p
0

the fraction of empty patches.
The rate of colonization of an empty habitat by

species 1 is proportional to>
1
"p

1
#p

3
, the total

fraction of habitats occupied by species 1, with
a constant of proportionality m

1
. Similarly, the

rate of colonization of a habitat occupied by spe-
cies 2 is proportional to >

1
with a decreased

constant of proportionality k
1
(k

1
(m

1
). We are

assuming that the propagules are equally likely to
come from any occupied habitat. The e!ect of
spatial arrangement of the habitat is ignored and
would have to be considered when the dispersal
distance of the species is much smaller than the
size of the region. The local population extinction
of either species in a patch is caused only by
competitive displacement. Let e

1
be the extinction

rate of species 1 in the presence of species 2. The
extinction of species 1 in the absence of species 2 is
ignored. m

2
, k

2
and e

2
are de"ned in the same way.

Thus, we get the following deterministic equa-
tions for this system:

dp
0

dt
"!(m

1
>

1
#m

2
>

2
)p

0
, (3a)
dp
1

dt
"m

1
>

1
p
0
!k

2
>

2
p
1
#e

2
p
3
, (3b)

dp
2

dt
"m

2
>

2
p
0
!k

1
>

1
p
2
#e

1
p
3
, (3c)

dp
3

dt
"k

1
>

1
p
2
#k

2
>

2
p
1
!(e

1
#e

2
)p

3
. (3d)

The equilibrium points of these equations can
be solved analytically. Obviously, p

0
is a decreas-

ing function of time until p
0
"0 and we have that

at equilibrium

pL
0
"0. (4)

That is to say that at equilibrium all patches
will be occupied. Then, we have pL

1
#pL

2
#pL

3
"1. So, there are only two of the three

factors pL
1
, pL

2
and pL

3
being independent of each

other. It is easy to "nd that there are three non-
trivial equilibrium solutions of the system

pL
1
"1, pL

2
"0 and pL

3
"0, (5a)

pL
1
"0, pL

2
"1 and pL

3
"0, (5b)

pL
1
"

1
2 A1#

2e
2

k
2

!S1#
4e

1
e
2

k
1
k
2
B ,

pL
2
"

1
2 A1#

2e
1

k
1

!S1#
4e

1
e
2

k
1
k
2
B , (5c)

pL
3
"!A

e
1

k
1

#

e
2

k
2
B#S1#

4e
1
e
2

k
1
k
2

.

The "rst, we interpret as species 1 being pres-
ent in the region alone, the second as species
2 present in the region alone, the third as the
coexistence of the two species. Under the condi-
tions of coexistence, the fraction of patches occu-
pied by one species or two species together
depends on e

1
/k

1
and e

2
/k

2
only. We call e

i
/k

i
(i"1 or 2) the competition coe$cient. It
measures the competitive e!ect of species 2 (or 1)
on species 1 (or 2). The position of the factor of
e/k in the model is just as a in the Lotka}Volterra
model.



TABLE 1
Stability conditions of di+erent equilibrium solu-

tions [eqn (5)]

P
I

P
II

P
C

e
2

k
2

'1#
e
1

k
1

e
1

k
1

'1#
e
2

k
2

A
e
1

k
1

!

e
2

k
2
B
2
(1

Note. P
I
, the boundary equilibrium point of only species

1 present; P
II
, the boundary equilibrium point of only

species 2 present; P
C
, the internal equilibria of the coexist-

ence of two competing species.
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The question we are concerned with is when
can two competing species coexist in the region at
equilibrium? What are the general conditions
that permit the coexistence of competitors, and
what circumstances lead to competitive exclusion
in all regions? Can a patch occupied by one
species be invaded by a competing species? It is
instructive to discuss the stability of each equilib-
rium point. If only one boundary equilibrium is
stable and the other boundary equilibrium point
and the internal equilibrium point are unstable,
the two competing species cannot coexist. If only
the internal equilibrium point is stable, the two
competing species can stably coexist and a spe-
cies can always invade a region occupied by its
competitor. If both boundary equilibrium points
are stable and the internal equilibrium is unsta-
ble, the two competing species can never coexist
and the outcome of competition depends on the
initial fractions of the habitats occupied by each
of the species.

Considering a small perturbation from any one
of the three equilibrium points, we let

p
0
"pL

0
,

p
1
"pL

1
#p@

1
,

(6)
p
2
"pL

2
#p@

2
,

p
3
"pL

3
!(p@

1
#p@

2
) .

Substituting eqn (6) into eqn (3) and consider-
ing the "rst order of p@

i
(i"1 or 2), we get the

linear di!erential equations of the system

d
dt A

p@
1

p@
2
B"AA

p@
1

p@
2
B , (7)

where

A"C
!k

2
!e

2
#2k

2
pL
1

!e
2

!e
1

!k
1
!e

1
#2k

1
pL
2
D .
(8)

The stability of an equilibrium point is
determined by the eigenvalues of A. From this,
we can easily get the stability condition of each
equilibrium solution (Table 1). It is not surprising
that the stable condition at internal equilibrium
point is just the unstable conditions of two
boundary equilibrium points (Fig. 1). The stable
conditions depend on e

1
/k

1
and e

2
/k

2
only.

When (e
1
/k

1
!e

2
/k

2
)2(1, the two species can

stably coexist. (e
1
/k

1
!e

2
/k

2
)2(1 means that

neither species has the absolute predominance in
the competition. Both the species have the chance
to exclude its competitor from any given patches,
and have the ability to colonize the patches occu-
pied by its competitor. Though a species may be
excluded from a patch, it may succeed in another
patch. In this case, coexistence is maintained.

For two ecologically identical species, we have
k
1
"k

2
"k, e

1
"e

2
"e. In this case, the expres-

sion (e
1
/k

1
!e

2
/k

2
)2(1 is truly satis"ed. That is

to say, two identical species will stably coexist
regionally in such system. Because, as assumed,
there are no di!erence between inter- and intra-
speci"c competition of two identical species, both
species have the chance to succeed in competition
in a given patch and the ability to colonize the
patches occupied by its competitor. So, through
the process of exclusion}colonization, a dynamic
equilibrium of coexistence will be maintained.
Similar species have the same patterns of disper-
sal and the same food requirements would be
more likely to exclude each other from local
patches. However, because of the ability to
invade the patches occupied by its competitor,
coexistence in the region can be maintained.

It is also possible for two competing species
with unequal competitive ability to stably co-
exist, when there is a trade-o! between local
competition ability and invasion ability. In this
case, though the stronger competitor has a higher



FIG. 1. The stability regions of the internal equilibria of
two competing species in parameter space. The real line is
for the analytical model and the dotted line for the consid-
eration of rescue e!ects (u

1
"u

2
"0.3). The stable region

at internal equilibrium point is reduced due to the rescue
e!ects.
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chance to succeed in local competition (e
1
(e

2
),

the weaker competitor may have higher prob-
ability in colonization (k

1
(k

2
), so that the stab-

ility condition (e
1
/k

1
!e

2
/k

2
)2(1 can be main-

tained. In this case, the coexistence is just like the
coexistence of two like species.

When (e
1
/k

1
!e

2
/k

2
)2(1 is not satis"ed,

either e
2
/k

2
'1#e

1
/k

1
or e

1
/k

1
'1#e

2
/k

2
,

and coexistence can never occur. That is to say
that a species with weak competitive ability and
low ability to colonize can never coexist with its
competitor. This is di!erent from the result of
metapopulation models that a completely
superior competitor and a completely fugitive
species can stably coexist regionally (Nee & May,
1992).

3. The Rescue E4ects on the Model of
Two Competing Species

In the basic model, we have assumed that there
is no correlation between the probability of com-
petitive exclusion and p. However, as Hanski
(1983) pointed out, the probability of extinction
often decreases with increasing p. Because of
emigration and colonization, average local
abundance of species is usually positively corre-
lated with p. When p is small, many local popula-
tions are small and prone to be excluded. When
p is large, most local populations are large and
unlikely to be excluded rapidly. Because of this
correlation between exclusion probability and
population size and between average population
size and p, the exclusion probability and p are
also correlated.

Let us consider the rescue e!ect and assume
that the correlation between the exclusive prob-
ability and p is linear. In this case, eqn (3) should
be rewritten as

dp
0

dt
"!(m

1
>

1
#m

2
>

2
)p

0
, (9a)

dp
1

dt
"m

1
>

1
p
0
!k

2
>

2
p
1
#e

2
p
3
(1!u

2
>

2
), (9b)

dp
2

dt
"m

2
>

2
p
0
!k

1
>

1
p
2
#e

1
p
3
(1!u

1
>

1
), (9c)

dp
3

dt
"k

1
>

1
p
2
#k

2
>

2
p
1
!(e

1
(1!u

1
>

1
)

#e
2
(1!u

2
>

2
))p

3
, (9d)

where 0)u
1
)1 and 0)u

2
)1 are the slopes

of the declining extinction rate with increasing
>

1
and >

2
, respectively, and are usually inter-

preted as the e!ect of di!erent time-scale for
extinction and recolonization. It is easy to "nd
that there should be pL

0
"0 at equilibrium points,

and then there are only two of the three factors
pL
1
, pL

2
and pL

3
being independent of one another.

It is obvious that there are two boundary
equilibria

pL
1
"1, pL

2
"0, pL

3
"0 (10a)

and

pL
1
"0, pL

2
"1, pL

3
"0. (10b)

However, it is di$cult to "nd the internal equilib-
ria of eqn (9). Here, we just discuss the stability of
the two boundary equilibrium points and argue
whether either is stable. If either boundary equi-
librium is unstable, coexistence may occur.
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Su$cient and necessary conditions for the
stability of the boundary equilibrium points are

e
2

k
2

'1#
e
1

k
1

(1!u
1
)

for species 1 present, (11a)

e
1

k
1

'1#
e
2

k
2

(1!u
2
)

for species 2 present. (11b)

When expression (11a) is satis"ed, the equilib-
rium solution of expression (10a) is stable and
species 1 can prevent species 2 from invading. If it
is not satis"ed, the point is unstable and species
2 can invade the region occupied by species 1.
When the rescue e!ects are concerned, the stabil-
ity condition is not only related to e

i
/k

i
(i"1 and

2) but related to the strength of rescue e!ects also.
The rescue e!ect enlarges the stable region of
boundary equilibria (Fig. 1). A weaker competi-
tor may invade a region occupied by a stronger
competitor, but it will not invade the region any-
more when there are rescue e!ects.

In the limiting case u"1, expression (11a)
reduces to e

2
/k

2
'1. That is to say that when the

invasion rate of species 2 in the presence of spe-
cies 1 is less than the exclusion rate, species 2 will
eventually be excluded.

Considering two like species in the values
for their parameters, we set k

1
"k

2
"k and

e
1
"e

2
"e. In this case, condition (11a)

reduces to

0'1!
e
1
u

1
k
1

. (12)

Obviously, eqn (12) can never be satis"ed for
any circumstance. Therefore, we would predict
that one species could always invade a region
occupied by a similar species. Based on this con-
clusion, we can expect that two identical species
would coexist in the region and at least one stable
equilibrium point would exist. Of course, the
presence of the competing species could greatly
reduce its competitor's abundance.

When both expressions (11) are not satis-
"ed, there should be at least one stable internal
equilibrium solution and there may be coexist-
ence. Further, we may discuss some aspects of
internal equilibrium points by using the results of
the basic model. Let
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"0, (13a)
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. (13d)

Substituting eqn (13) into the right-hand side
of eqn (9), we have

dp
0

dt
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"0, (14a)
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dt
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where, P"P(p
0
, p

1
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2
, p

3
) and P*"P* (p*

0
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1
,
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2
, p*

3
). Obviously, there are dp

1
/dt
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2
/dt

P/P*(0 and dp
3
/dt

P/P*'0. Then we
may expect that at internal equilibrium point
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That is to say that, when the rescue e!ects are
considered, the proportion of doubly occupied
patches pL

3
will be enlarged.

4. Discussion

Many mechanisms have been proposed to
explain the coexistence of identical species since
the birth of the competitive exclusion principle.
These mechanisms can be divided into two cat-
egories (Chesson, 1991). The "rst is to prolong
coexistence by postponing the inevitable extinc-
tion of some competitors (e.g. Hubbell, 1979;
Hubbell & Foster, 1986). The second is to truly
promote long-term coexistence by giving each
species an advantage when it is at low densities
(e.g. Atkinson & Shorrocks, 1981; Hanski, 1981;
Chesson & Huntly, 1988, 1989; Ives, 1988). How-
ever, because all the mechanisms that fall into the
second category require that each species has an
advantage when it is at low densities, they are not
truly identical species. In recent years, meta-
population models have made some success in
explaining the coexistence of competing species.
Taneyhill (1999) analysed the competition in
metapopulations, and proved the conditions
under which a metapopulation structure invali-
dates Gause's law for regionally similar competi-
tors. Taneyhill's results suggest that coexistence
of like species within a metapopulation is
possible if and only if there is recolonization
from doubly occupied patches, and rescue e!ects
may make competitive coexistence impossible
via the creation of a saddle point equilibrium
having one-dimensional stable and unstable
manifolds.

In this paper, we constructed an analytical
model to evaluate the coexistence of competitive
species in subdivided but locally stable habitats.
The conditions of the model can be seen in some
real-world scenarios where extinction events are
relatively rare; colonization of newly created
habitat, or in the habitat where local stochastic
extinction takes place on a time-scale that is
much longer than that of local competitive dis-
placements are examples. Given that there is no
local extinction of each patch when only one
species exists, species invading into this environ-
ment will occupy all patches. The presence
of a competing species will a!ect both the
colonization rates and the persistence of the com-
petitor. The present model is not just a simpli"ed
form of the four-state metapopulation competi-
tion models (Slatkin, 1974; Taneyhill, 1999). In the
model, we prove that the coexistence of very like
species do not depend on environmental stochas-
ticity. This may contribute to understand the
phenomenon of coexistence on a regional scale.

Our model predicts that the conditions of
stability of coexistence and the proportion of
patches of coexistence are only related to the
ratios e

1
/k

1
and e

2
/k

2
, not e

1
, k

1
, e

2
and k

2
,

respectively. The condition (e
1
/k

1
!e

2
/k

2
)2(1

implies that, if there is coexistence of two compet-
ing species, there should not be much di!erence
in their competitive abilities. So, two identical
species always coexist, and two unalike compet-
ing species, if there is a trade-o! between local
competition ability and invasion ability. Similar
species that have the same patterns of dispersal
and the same food requirements would be most
likely to exclude each other from a local patch.
Their coexistence thus depends on their invasion
abilities in the presence of the competitors. So,
the mechanism of coexistence in such system is
not the ability of the species to colonize the
empty patches but the ability to invade the
patches occupied by its competitor.

It has been considered that, in metapopulation
models, &&too much'' migration can be as bad for
metapopulation persistence as &&too little'' migra-
tion and species with an intermediate rate of
migration are the ones which tolerate best habi-
tat fragmentation (Hanski & Zhang, 1993). And,
further, increased movements between habitat
patches do not necessarily facilitate regional co-
existence, because increased movements may
critically decrease the di!erence between the local
(usually fast) and regional (usually slow) time
scales (Hanski, 1983). However, the results of the
present model indicate that increasing move-
ments will increase the chance of successful in-
vasion into its competitor's patch, and eventually
facilitate regional coexistence.

When considering rescue e!ects, both the
stable regions at boundary equilibrium points
and the fraction of doubly occupied patches at
the internal equilibrium point will be enlarged.
For two stably coexisting species, rescue e!ects
can decrease the local competitive displacement
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rate, and thus reduce the competitive impact of
its competitor. We may expect that the fraction of
doubly occupied patches would increase when
considering rescue e!ects. On the other hand,
because the rescue e!ects increase with the in-
crease in the proportion of occupied patches, the
relative di!erence between two unalike competi-
tors would also be enlarged. In this case, rescue
e!ects may change the interior equilibrium from
a stable node to an unstable saddle.

We may extend the results of the present model
to the more general case. As we have de"ned k as
the rate of colonization of a habitat occupied by
a competitor, it is related to the dispersal ability
of the species, the local competitive ability in the
presence of a competitor, and the chance of suc-
cess of dispersing individuals in "nding new
patches. So, for a certain pair of competitors,
when the density of the patches increases or the
distances among patches decreases, both k

1
and

k
2

will increase, and eventually the proportion of
patches occupied by both species will increase.
Thus, we may expect that there are highest co-
existence in a spatially structured habitat, in
which individuals can invade other patches freely
while the extinction caused by competition
occurs only within doubly occupied patches. In
fact, the restricted condition of the spatially
structured habitats can also be removed in many
cases. Within any habitat, an individual organism
is more likely to interact with neighbouring or-
ganisms than with more distant ones, especially
for terrestrial plants, many marine invertebrates,
corals and other sessile organisms (Pacala,
1986a, b; Goldberg, 1987; Pacala & Silander,
1990; see Tilman, 1994). So, we can expect that
individual exclusion will be mostly caused by its
neighbours. In this case, the restrictive condition
of spatially subdivided habitats in the model will
have no meaning, and we can expect that two
identical species can stably coexist in homo-
genous environments. This is di!erent from the
Lotka}Volterra model's predictions. The classi-
cal model assumes that the number of individuals
of a species in a community is in#uenced by the
numbers of all other species present in the same
community. The population dynamics of two
completely competing species is a stochastic5 dis-
placement process between species and the out-
comes of competition are also stochastic. Thus,
two identical species cannot stably coexist in
Lotka}Volterra model.

However, because competitive exclusion
always occurs locally and individual colonization
may occur in a much di!erent spatial scale, local
extinction caused by interspeci"c competition
may be recolonized by other individuals of the
locally excluded species. In this case, two identical
species may regionally coexist in a state of dy-
namic equilibrium of locally competitive displace-
ment and recolonization. So, in our model, though
local population competitive exclusion is still
a stochastic process, the exclusion can be compen-
sated by recolonization. The abilities to invade its
competitor's manor may play the role of &&restor-
ing force''. When there is any deviation against the
equilibrium point, the recolonization will occur.
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